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Abstract

The buoyancy-driven convection in a square cavity filled with water-saturated porous medium is studied numerically. While the right
and left side wall temperatures vary linearly from ha to ho and ho to hb, respectively with height and ho is the mean of ha and hb, the top
and bottom walls of the cavity are thermally insulated. The Brinkman–Forchheimer extended Darcy model is considered to study the
effects of density maximum, Grashof numbers, porosity and Darcy numbers on the buoyancy-induced flow and heat transfer. The finite
volume method is used to discretize the governing equations, which are solved by Gauss–Seidel and successive over relaxation methods.
The temperature distribution and flow fields are presented in the form of streamlines, isotherms and mid-height velocity profiles. It is
found that the effect of density maximum is to slow down the natural convection and reduce the average heat transfer. The strength
of convection and heat transfer rate become weak due to more flow restriction in the porous medium for small porosity.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of fluid flow and heat transfer in porous
media are encountered in different applications such as
oil recovery, underground water flow, high-performance
insulation for building and cryogenic containers particu-
larly in the field of large storage system of agricultural
products. The buoyancy-driven convection in a fluid-satu-
rated porous medium is an important study nowadays in
devising and designing engineering equipments. The
devices include heat exchangers, planar reactors and indus-
trial furnaces which find natural and technical applications
of buoyancy-driven convection. The buoyancy driven con-
vection arises in a fluid due to the density variations caused
by the temperature differences of the system.

Several studies on buoyancy-driven fluid flow and heat
transfer in porous media have been reported for different
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physical formulation and geometric models with various
boundary conditions. The model commonly used consists
of a porous cavity with both the vertical walls maintained
at constant temperatures or one vertical wall subject to a
constant heat flux and the other vertical isothermal wall,
while the horizontal walls are adiabatic. The paper studies
numerically the buoyancy-driven convection in a porous
cavity with linearly varying temperatures. The hot and cold
walls are vertical walls while the horizontal walls are adia-
batic. Convection in water behaves differently around the
temperature region of 4 �C due to the anamolous behavior
of density around this temperature and the density of water
at both side walls of the cavity varies non-linearly with the
temperature. A linear temperature-density relationship has
been considered in most of the analytical and numerical
studies, presented in the literature on natural convection
of water in porous-filled rectangular/square enclosures.
The present work is a report of an investigation of the effect
of the density extremum of water and varied parameters of
the porous medium on heat transfer. Buoyancy forces can
induce motion in liquids contained in enclosures with
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differentially heated side walls. The flows associated with
this mechanism have been extensively studied by many
authors. A few closely related studies needed to follow
the present work only are reviewed in this section.

Poulikakos [1] investigated the natural convection in a
fluid-saturated porous layer differentially heated in the hor-
izontal direction. The study shows that the bicellular flow
field is the result of the existence of the density maximum.
Ettefagh et al. [2] analyzed the importance of non-Darcian
effects in open-ended cavities filled with a fluid-saturated
porous medium, using Brinkman-extended Darcy, Forch-
heimer-extended Darcy and generalized flow models. Their
results show the significance of both the Forchheimer and
the Brinkman modifications on the predictions of buoy-
ancy-induced flow and heat transfer.

Nithiarasu et al. [3] investigated the natural convective
flow and associated heat transfer in a fluid-saturated por-
ous medium using the generalized approach. It is shown
that a highly convective regime with strong channeling near
the walls and higher heat transfer rates to occur for higher
Darcy, Rayleigh and Biot numbers. Das and Sahoo [4]
studied the effect of Darcy, Rayleigh and heat generation
parameters on natural convection in a porous square enclo-
sure, using the Brinkman-extended Darcy model. It is
reported that the peak temperature occurs at the top cen-
tral part and weaker velocity prevails near the vertical walls
of the enclosure due to the heat generation parameter
alone.

Kandaswamy and Kumar [5] studied numerically the
effect of a magnetic field on the buoyancy-driven flow of
water inside a square cavity with differentially heated side
walls. Their report reveals that the average Nusselt number
decreases with an increase in the Hartmann number. Sun-
daravadivelu and Kandaswamy [6] used a fourth order
polynomial approximation for the temperature-density
relation to study the buoyancy-driven non-linear convec-
tion in a square cavity. It is reported that the heat transfer
rate depends nonlinearly on the temperature gradient.
Zheng et al. [7] studied convection in a square cavity filled
with an anisotropic porous medium saturated with water
near 4 �C. It reveals that the Nusselt number is to be max-
imum when the maximum permeability is in the vertical
direction for the case where the principal axes are parallel
and perpendicular to the gravity vector. Khanafer and
Vafai [8] carried out a study on double diffusive mixed con-
vection in a lid-driven enclosure filled with a non-Darcy
fluid saturated porous medium. This study reveals that
the buoyancy ratio, the Darcy and Lewis numbers have
profound effects on the double diffusive phenomenon.

Osorio et al. [9] reviewed experimental and numerical
results of the natural convection of water in an inclined
square cavity at temperatures near its maximum density.
Saeid and Pop [10] conducted a numerical study on the
effects of maximum density on natural convection from a
discrete heater in a cavity filled with porous medium. They
have reported that the existence of buoyancy force rever-
sals resulting from the maximum density effect results in
a reduction of the convective flow and average Nusselt
number. Hossain and Rees [11] investigated the effect of
the density maximum of water on natural convection in a
rectangular enclosure having isothermal walls with heat
generation. Their study shows the flow and temperature
fields to depend very strongly on the internal heat genera-
tion parameter and the differences in temperatures at the
side walls.

Tanmay et al. [12] studied the effects of various thermal
boundary conditions on natural convection in a square
cavity filled with a porous medium. In their work,
Darcy–Forchheimer model is used to simulate the momen-
tum transfer in the porous medium. They have reported
that the non-uniform heating exhibits greater heat transfer
rate at the center of the bottom wall than that with uniform
heating case for all Rayleigh number regimes. It reveals
that the rate of heat transfer increases when the tilting
angle of the cavity takes lower negative values and with
increase in the internal sources. Kandaswamy et al. [13]
estimates through a numerical investigation on transient
natural convection of cold water around its density maxi-
mum in a square cavity that the average heat transfer rate
behaves non-linearly as a function of Grashof numbers.
Sathiyamoorthy et al. [14] studied the influence of linearly
heated vertical wall(s) and uniformly heated bottom wall
on flow and heat transfer characteristics due to natural
convection within a square cavity filled with porous med-
ium. In the case of linearly heated side walls, they found
the presence of symmetric strong secondary circulations
to enhance the local mixing process in the lower half of
the cavity for low Prandtl number.

Kaviany [15] describes the effect of porosity on the con-
vective flow of a fluid in porous media. Nield and Bejan
[16] provide a comprehensive literature survey on natural
convection in porous media. Vafai [17] gives a deep insight
into convective heat transfer in porous media. The limita-
tions of most of the existing studies in a porous cavity
are (i) using Darcy flow model and (ii) using linear den-
sity-temperature relations. The density of water reaches a
maximum value at a specific temperature and decreases
when deviating from that temperature. As a result, the
Boussinesq approximation is not applicable to such fluids.
The present study uses the Brinkman–Forchheimer
extended Darcy model to investigate the effect of water
density maximum, Grashof number, Darcy number and
porosity on heat transfer inside a square cavity filled with
a water saturated porous medium.

2. Mathematical formulation

Consider a two-dimensional square cavity of side L with
water saturated porous medium as shown in Fig. 1. The
vertical walls are maintained at two different varying tem-
peratures. The lower end of right sidewall of the cavity is
maintained at a constant temperature ha (=273 K). The
upper end of left sidewall of the cavity is maintained at
temperature hb(>ha). The temperature ho is the average of
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the temperatures ha and hb. The right wall temperature is
varying linearly from the bottom (ha) to the top (ho). The
left wall temperature is varying linearly from the bottom
(ho) to the top (hb). The horizontal walls are adiabatic.
The gravity acts in the downward direction. The velocity
components u and v are taken in the x and y directions,
respectively.

The porous medium is assumed to be isotropic, homoge-
neous and in thermodynamic equilibrium with the fluid.
Also,it is assumed that the solid matrix and the fluid are
in local thermodynamic equilibrium. The flow in the cavity
is assumed to be two-dimensional, laminar and incom-
pressible with negligible viscous dissipation. The specific
heat ratio (r) is assumed to be one. The thermophysical
properties of the fluid are assumed to be constant except
the density variation in the buoyancy force, which follows
the relation, as described by Kandaswamy and Kumar [5]
and Sundaravadivelu and Kandaswamy [6], q ¼ qo½1�P4

i¼1ð�1Þibiðh� hcÞi�, where q0 is the density of water at
hc, b1 = 6.8143 � 10�5, b2 = 9.9901 � 10�6, b3 = 2.7217 �
10�7 and b4 = 6.7252 � 10�9.

The system of equations governing the two-dimensional
motion described above is
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where h is the fluid temperature, K is the permeability of
the porous medium, q is the fluid density, p is the fluid pres-
sure, a is the effective thermal diffusivity, � is the porosity, m
is the kinematic viscosity of the fluid, t is time and x is the
vorticity function.

The appropriate initial and boundary conditions are

t ¼ 0 : u ¼ v ¼ 0; h ¼ hc; 0 6 x 6 L; 0 6 y 6 L;

ð5Þ
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The following non-dimensional variables are used
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The governing equations in non-dimensional form
reduce to the vorticity-stream function formulation as
follows
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The initial and boundary conditions in dimensionless form
are

s ¼ 0 : U ¼ V ¼ 0; f ¼ T ¼ 0; 0 6 X 6 1;

0 6 Y 6 1; ð14Þ
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where f is the vorticity, W is the stream function, s is the
non-dimensional time.

The non-dimensional parameters that appear in the
equations are Da = K/L2, the Darcy number, Gri = g-

bi(hh � hc)
iL3/m2,i = 1,2,3,4, the Grashof numbers and

Pr = m/a = 13.67, the Prandtl number. The local Nusselt
number, a measure for heat transfer across the hot wall,
is defined by Nu = oT/oYjY=0 and the average Nusselt

number is given by Nu ¼
R 1

0
Nu dX :

3. The method of solution

The non-dimensional governing equations are discret-
ized using finite volume method to form a system of alge-
braic equations as in Patankar [18]. Gauss–Seidel method
is used to solve the system of equations for the energy
and vorticity whereas successive over relaxation (SOR)
method is used to solve equations for the stream function.
Different mesh sizes from 21 � 21 to 101 � 101 are used to
carry out the study. It is clear from the grid independence
test as shown in Fig. 2 that a 41 � 41 uniform grid is
enough to investigate the problem. Thus, after calculating
the temperature and vorticity values at an advance point
in time s = (n + 1)ds and using their respective solution
given at s = (n)ds (n = 0 corresponds to the initial condi-
tion), the stream function is solved for its solution at this
advanced time step. The time step ds is taken to be 10�5.
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The boundary conditions for f are obtained from the
relation as described by Rudraiah et al. [19]

f ¼ Wi;2 � 8Wi;1

2� h2
ð18Þ

where ‘i’ denotes spacial interval in the vertical direction
and ‘h’ denotes the spacial interval in the direction normal
to the boundary. The velocity components are obtained
from the resulting stream function values. The sequence
beginning with the solution of the energy equation is ap-
plied repeatedly until the desired accuracy of results are ob-
tained. The convergence criterion used for the field
variables /(=T,f,W) is j /ðnþ1Þði;jÞ�/ðnÞði;jÞ

/ðnþ1Þði;jÞ
j 6 10�6.

Fig. 3 shows the time history of average Nusselt number
for different Grashof numbers. The average heat transfer
rate decreases as time evolves and attains a constant value,
indicating that the steady-state condition prevails. The time
scale required to achieve steady-state condition depends on
the temperature of density maximum of water which causes
formation of dual cell pattern. In the case of single cell pat-
tern, the time taken for convergence is shorter, whereas it is
longer in the case of dual cells formation.
4. Results and discussion

Buoyancy-driven convective flow of water in a square
cavity filled with water-saturated porous medium is studied
numerically around the region of its density maximum.
Both the hot and cold wall temperatures vary linearly with
height. The computations were carried out for various
porosities, Darcy numbers and Grashof numbers. The
results are presented as streamlines and isotherms. The rate
of heat transfer in the cavity is measured in terms of the
average Nusselt number.

Fig. 3 exhibits the time history of average Nusselt num-
ber for porosity � = 0.4, Da = 10�3 and different Grashof
numbers. The average heat transfer rate decreases as time
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evolves and attains a constant value, indicating that the
steady-state condition prevails. It is clear that higher heat
transfer rate is achieved for large Grashof numbers. Figs.
4–8 show the fluid motion and resulting temperature distri-
bution for different Grashof numbers with porosity � = 0.4
and Darcy number Da = 10�3. When the hot wall is main-
tained at the temperature where Gr1 = 22,582, the flow
pattern consists of a single major cell rotating in the coun-
ter clockwise direction as seen in Fig. 4. The temperature
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distribution inside the cavity is nearly of conduction type.
As the density of water near right wall is less than the den-
sity of water near left wall, the fluid raises along the right
wall and descends along the left wall.

When the hot wall temperature is increased to the tem-
perature for Gr1 = 36,697, a secondary vortex rotating in
the clockwise direction appears at the top left corner of
the cavity near the hot wall, suppressing the primary eddy
downwards as seen in Fig. 5. This is because of the anom-
0 .
10 .

20.
2

0 .3

0 .3

0.4

0.4
0.5

0.5

0.6

0.6

0.6

0.7

0.
7

0 .
8

0 .
8

0 .
9

r1 = 22,582, � = 0.4 and Da = 0.001.

0 .
10 .
2

0.2
0 .3

0 .3

0.4

0.4

0.4

0.5

0.5

0.6

0.
6

 0
.70 .

7
0 .

8

0 .
80 .

9

r1 = 36,697, � = 0.4 and Da = 0.001.

0 .
1

0.2
0 .3

0 .3

0.4

0.4

0.5

0.5

0 .
6

0.60.7
0.7

0.8

 0.80.9

r1 = 42,342, � = 0.4 and Da = 0.001.



-0.1

-0 .1
-0 .1

-0 .1
-0 .1 -0 .1
-0 .0

-0.0

-0.0

-0
.0

0 .
0

0.0

0.0

0.10.1

 0.1

0.
1

0.1

0.
1

0.
2

0 .2
 0 .3

0 .3

0 .
4

0.4

0.
5

 0.6

0.6

0.7
0.7

0.8
0.80.9

Fig. 7. Stream lines and isotherms for Gr1 = 45,165, � = 0.4 and Da = 0.001.

-0.1

-0.1

-0
.1

-0 .0
-0 .0

-0 .0
-0 .0

 0.0

 0.0

0.00.10.1
0.10.1

0.10.1

0.2

0.2

0.
2

0 .2

0 .3

0.3

0.
4

0.4

0.
5

0.5

0.6
0.60.
7

0.
7

0.8
0.80.9

Fig. 8. Stream lines and isotherms for Gr1 = 50,811, � = 0.4 and Da = 0.001.

1960 P. Kandaswamy, M. Eswaramurthi / International Journal of Heat and Mass Transfer 51 (2008) 1955–1961
alous density behavior of water near 4 �C, which exists
away from the left wall. As such, the fluid falls along the
plan of density maximum of water, leading to the forma-
tion of secondary vertex. The corresponding isotherms
get distorted slightly near the upper left corner. Figs. 6
and 7 are presented to show the streamlines and the iso-
therm patterns for the hot wall temperatures with
Gr1 = 42,342 and Gr1 = 45,165, respectively. In these cases,
the secondary eddy gets strengthened suppressing the pri-
mary eddy further toward right wall. As the density maxi-
mum region moves further towards the right wall in this
case, the secondary eddy gets strengthened further. The
corresponding isotherms get distorted largely as seen in
Fig. 6.

Fig. 7 shows that the secondary cell grows in size along
left wall, suppressing the primary eddy towards the right
wall for hot wall temperature with Gr1 = 45,165. In this
case, the density maximum of water exists along the verti-
cal direction in the middle of the cavity. So, the fluid falls in
the middle of the cavity and raises along the two vertical
walls where the density is less and the bicellular pattern
in flow field is noticed for the Grashof number of 45,165
as seen in Fig. 7. This causes reduction in convection heat
transfer rate. As the flow rises along the hot wall as well as
the cold wall and falls along the plane of maximum density
inside the cavity, convective heat transfer rate is reduced to
its minimum level at Gr1 = 45,165. This unique phenome-
non is due to the effect of the density maximum of water
near 4 �C as seen in Fig. 7. The streamlines are distorted
largely for further increase in temperature at the top of
the cavity.

For hot wall temperature with Gr1 = 50,811, the clock-
wise rotating secondary cell spreads to cover major part
of the cavity, pushing the counter clockwise rotating pri-
mary eddy close to right bottom corner of the cold wall
as seen in Fig. 8. The maximum density plane moves fur-
ther close to cold wall. This results in improving convective
heat transfer rate further. As the temperature at top corner
of the hot wall increases, the heat transfer rate increases.
Fig. 8 shows the streamlines and isotherms for the Grashof
number Gr1 = 50,811. The corresponding isotherms are
almost parallel. Fig. 8 shows that the buoyancy-driven con-
vection dominates in the cavity. The average heat transfer
rate improves in this case.

Fig. 9 shows how porosity of the medium affects the
average heat transfer rate. As the porosity increases, the
heat transfer rate also increases. The higher porosity leads
to higher heat transfer rate. This is because of the fluid
motion at higher velocity due to larger porosity. Fig. 9 also
reveals that the rate of heat transfer is rapid with increase
in the porosity. This is because of the vigorous fluid motion
inside the cavity. Fig. 10 shows the effect of Darcy numbers
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on the average heat transfer rate for different Grashof
numbers and the porosity � = 0.4. It is observed that the
increase in Darcy number enhances the average heat trans-
fer rate. When the Darcy number is very small, the heat
transfer takes place by the mode of conduction. The con-
vective heat transfer rate goes down as the Darcy number
decreases. The Darcy number, which depends on the per-
meability of porous medium, leaves strong effects on con-
vection in a porous-filled cavity. The motion of the fluid
particle is higher for higher value of Darcy number and
the flow is restricted largely in the case of very low value
of Darcy numbers.

A clear observation made is that vigorous buoyancy
force results inside the cavity, which in turn drives the fluid
motion at a high velocity for high Grashof numbers and
porosity. But a smaller Darcy number reduces the heat
transfer rate. Fig. 3 characterizes the fluid flow and heat
transfer in rectangular cavity problems. It brings about
an understanding of the time scale required to achieve
steady-state condition, determining whether there is an
oscillatory or a monotonic approach to the steady-state.
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